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I. SUPPLEMENTARY FIGURES
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Supplementary Figure 1. Reference hBN-graphene-hBN sandwich Hall bar device. (a)

Schematic illustration of the hBN-graphene-hBN sandwich structure and nature of the quasi-one-

dimensional graphene-metal (Cr/Au) contact. (b) Optical image of an etched and contacted ∼1 µm-wide

hBN-graphene-hBN sandwich Hall bar device. (c) Four-terminal conductance as a function of back gate

voltage Vg measured at a constant current of 50 nA and a temperature of 16 K. From the linear slope near

the charge neutrality point (see dashed line) we extract a carrier mobility of around 150.000 cm2 V−1s−1.

The inset shows the four-terminal resistivity as a function of gate voltage at lower temperature (1.7 K).
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Supplementary Figure 2. Landau fan and capacitive coupling. (a)-(e) Second derivative of the

longitudinal conductance ∂2G/∂Vg∂B as a function of magnetic field B and back-gate voltage Vg for six

different devices with different widths. The red lines follow the evolution of the Landau levels. The slopes

of the lines are proportional to the capacitive coupling α. (f) The longitudinal resistivity ρ as a function

of B and Vg provide an alternative way to extract α from the position of the Landau levels, marked by

white lines.
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Supplementary Figure 3. Deviation from the ideal ballistic conductance for the 230 nm-

wide graphene constrictions. (a) Low-bias four-terminal conductance G as a function of charge carrier

density n. The red solid lines are fits to a simple capacitive coupling model (Eq. 2) valid at high carrier

densities for the holes and electrons regime, respectively. Deviations appear in the gray-shaded region

around the charge neutrality point. (b) Conductance G of panel (a) as a function of kF using the linear

density of states of ideal graphene (red solid line), or including a finite density of trap states (Eq. 4) around

the Dirac point (black solid line). The linear relation between G(kF) and kF expected for ideal graphene

is shown as a dashed red line. (c) and (d) Corresponding to (a) and (b) but for a different cool-down

of the same constriction. After exposing the sample to ambient conditions, the number of charge traps

responsible for the flat area around the Dirac point increased significantly.
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Supplementary Figure 4. Kinks in the back-gate characteristics of the 310 nm-wide graphene

constriction (a) Low-bias four-terminal conductance G as a function of back gate voltage Vg, measured

at T = 2 K. The ideal Landau-Büttiker model of conductance G ∝
√
n is marked in red. (b) Close-up

of the conductance G inside the dashed-line region of panel a. The reproducible kinks are clearly visible

(marked by red arrows). The shaded gray region denote deviations from the ideal Landauer model (red

trace).
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Supplementary Figure 5. Cool-down dependence of the kinks for the 230 nm-wide graphene

constriction I. Four-terminal conductance G as a function of back gate voltage Vg for four different

cool-downs of the 230 nm-wide graphene constriction. The traces are shifted horizontally for clarity.
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Supplementary Figure 6. Cool-down dependence of the kinks for the 230 nm-wide graphene

constriction II. (a) and (b) Four-terminal conductance G as a function of back gate voltage Vg for

different cool-downs of the 230 nm-wide graphene constriction at low and high charge carrier densities

(panels a and b, respectively). The traces are shifted horizontally for clarity.
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Supplementary Figure 7. Width dependence of the kinks in conductance. Four-terminal

conductance G as a function of back gate voltage Vg for four different devices of widths 230 nm (a),

250 nm (b), 280 nm (c) and 310 nm (d). The transmission traces are shown in black (red) for electrons

(holes) as a function of rescaled kF (see main text). The arrows point to kinks where the conductance

jumps by about c0× 4e2

h
, with c0 as measure for the overall transmission of the device, see Supplementary

Equation 3; c0 ≈ 0.95 for the 310 nm constriction. The traces are shifted horizontally for clarity.
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Supplementary Figure 8. Back-gate characteristics of the energy subbands of the 230 nm-

wide graphene constriction. (a) Low-bias four-terminal conductance G as a function of back-gate

voltage Vg. The theoretical position of the subbands in the Vg-axis is indicated by vertical dashed lines.

Close to the Dirac point (leftmost subpanel) measurements deviate from the ideal Landau model G ∝√
Vg shown in red (orange-shaded region). (b) Same as (a) after rescaling of the charge carrier density

(Equation 3). The vertical dashed lines indicating the theoretical position of the subbands matches now

the positions of kinks. (c) Derivative plot ∂G/∂Vg of the conductance trace shown in panel (a). The

correlation between the expected position of the subbands (vertical dashed lines) and measurements holds

only at high carrier densities. (d) Derivative plot ∂G/∂Vg of the conductance trace in panel (b).
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Supplementary Figure 9. Fourier transform of the conductance. Fourier transform of the

electron (black) and hole (red) conductance for the devices of width 230 nm (a), 250 nm (b), 280 nm (c)

and 310 nm (d). The widths extracted from the Fourier analysis WFT (peaks in F [δG(kF)]) are in good

agreement with the widths extracted from SEM images (blue vertical lines). The extracted widths WFT

and associated errors bars are shown in Figure 3f.
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Supplementary Figure 10. Bias spectroscopy of the 230 nm-wide graphene constriction.

(a) Differential conductance g (upper panel) and differential transconductance ∂g/∂Vg (lower panel) as

a function of back gate Vg and bias Vb voltages, measured at B = 0 T and T = 6 K. The differential

conductance g (top panel) is measured at Vb = 0 V in the low carrier density range. The vertical black

dashed lines indicate the position of the analyzed subbands. The transconductance ∂g/∂Vg (bottom color-

scaled panel), of the data shown in the upper panel, is measured as a function of an applied bias voltage Vb.

The kinks are characterized by high values (yellow color) of transconductance. The diamond structures

are highlighted by dashed gray diamonds. We extract an average subband spacing ∆E ≈ 13.5 ± 2 meV

(green line). (b) Same as panel (a) measured at high carrier densities. (c) Same as panel (a) for a

second cool-down of the same device. The blue trace represents the differential conductance g measured

at Vb = 15 mV (see blue arrow in lower colored panel). The horizontal dashed blue lines highlight the

levels of conductance of the intermediate kinks, visible (blue conductance trace) for energies above the

subband spacing, e.g. E ≈ 15 meV> ∆E (blue arrow in lower colored panel).
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Supplementary Figure 11. Finite bias spectroscopy of the 230 nm-wide graphene constric-

tion. (a) Differential conductance g as a function of back-gate voltage Vg, measured at Vb = 0 V, B = 0 T

and T = 6 K. The red solid line shows the ballistic model of conductance, fitted at high carrier densi-

ties. (b) Differential conductance g as a function of source-drain voltage Vb. The traces are taken at

fixed values of back-gate voltage Vg from −0.5 V (lower trace) to 3.0 V (upper trace) in steps of 30 mV.

The dense regions correspond to kinks in conductance. The intermediate kinks at high bias voltage are

marked by red arrows. The subband spacing ∆E ≈ 13.5 ± 3 meV is highlighted by a vertical red line.

(c) Differential conductance g as a function of source-drain voltage Vb measured at B = 140 mT. The

intermediate kinks at high bias voltage are marked by red arrows. We extract an equal subband spacing

as in panel b, ∆E ≈ 13.5± 3 meV (vertical red line).
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Supplementary Figure 12. Finite DC bias spectroscopy of the 230 nm-wide graphene con-

striction. (a) DC spectroscopy of the same device as in Supplementary Figure 11. (b) Conductance G

as a function of DC source-drain voltage Vb measured at B = 140 mT and T = 6 K, for the same device

as in panel a.
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Supplementary Figure 13. Temperature dependence of the back-gate characteristics for the

310 nm-wide graphene constriction. Low-bias back-gate dependent four-terminal conductance G as

a function of temperature T . The traces are shifted in the conductance axis for clarity. Temperature is

recorded from T = 2 K (black trace) up to room-temperature (T = 289 K, red trace), in steps of 7 K.
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Supplementary Figure 14. Temperature dependence of the conductance kinks for the

230 nm-wide constriction. (a) and (b) Four-terminal conductance G as a function of back gate

voltage Vg and temperature T , at low (panel a) and high (panel b) carrier densities. Measurements are

recorded at temperatures from T = 2 K to T = 24 K in steps of 0.7 K. (c) Zoom-in of the temperature

evolution of the shape of the kinks.



12

a b c

d

-1.5

B
 (

T
)

0

2

4

6

8

2.5

-4 -2 0 2 4

-18 -14 -10 -6 -2 +2 +6 +10 +14 +18ν=

B
 (

T
)

-0.2

0

0.2

0.4

0.6

0.8

1

0-0.2-0.4-0.6-0.8

-1.6

2.5-18-22ν= -14 -10 -6 -2

-0.5

2.6
+2 +6 +10 +14 +18 +22 +26

0 0.2 0.4 0.6 0.8
B (T)

26

22

18

14

10

6

2

0.30.20.100.20.40.6
0.8

-1
0

2
2

∂G
/∂n

 (1
0

 e
/h

.cm
)

12 -2n (10  cm )

12 -2

n (10  cm )

2
G

 (e
/h

)

12 -2n (10  cm ) 12 -2n (10  cm )

-1
0

2
2

∂G
/∂n

 (1
0

 e
/h

.cm
)

-1
0

2
2

∂G
/∂n

 (1
0

 e
/h

.cm
)

Supplementary Figure 15. Magnetic-field dependence of the size quantization for the

280 nm-wide graphene constriction. (a) Landau level fan of the 280 nm-wide graphene constric-

tion. (b) and (c) High resolution double derivative plots, measured at low magnetic fields B ≤ 1 T, in

the low-carrier density range for the hole- and electron-regimes, respectively. In panels a, b and c the

black dashed line denotes the boundary above which the magnetic field quantization of Landau level m

dominates over size quantization, i.e. when 2
√

2mlB < W . (d) Evolution of the conductance traces as a

function of charge carrier density n and magnetic field B. The B-field step size between traces is 8 mT.

The data was measured at T = 1.7 K.
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II. SUPPLEMENTARY TABLES

SEM width W (nm) α (1010 cm−2V−1)

1000 7.00

850 5.80

590 6.75

440 6.90

310 7.00

280 7.20

250 5.40

230 7.15

Supplementary Table 1. Lever arm values α for eight different devices extracted from the Landau

level fan measurements (see Supplementary Figure 2).
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III. SUPPLEMENTARY NOTES

Supplementary Note 1. Sample quality

The field-effect carrier mobility in our sandwich devices is on the order of 150.000 cm2 V−1s−1.

This high sample quality is thanks to advances in sample fabrication, in particular the van-der-

Waals stacking process: the graphene is fully encapsulated in hBN, resulting in significantly im-

proved sample quality. We extract the mobility from a one µm-wide Hall bar device fabricated in

the very same batch as our graphene constrictions (see Supplementary Figure 1). The dark blue

trace in Figure 1d of the main manuscript is taken from this Hall bar device. As all traces from the

constrictions with different widths (some of them carved out from the same hBN-graphene-hBN

sandwich) lie systematically below the Hall bar trace, we exclude bulk scattering as limiting pro-

cess in our devices. Independently, we have shown recently in a collaboration with A. Morpurgo,

F. Guinea and coworkers1 that in our high-quality devices the carrier mobility is not limited by

charge impurity and short-range scattering but rather by nanometer-scale strain variations giving

rise to long-range scattering with allowed pseudospin flips. We expect that the same limitations

on the mean free path also apply to our graphene constriction devices.

Supplementary Note 2. Extraction of the gate lever arm α

Measurements of Landau levels in graphene as a function of back gate voltage Vg and magnetic

field B (see Supplementary Figure 2) allow for an independent determination of the gate coupling

(or lever arm) α. The Landau level spectrum for massless Dirac fermions in graphene is given by

Em(B) = sgn(m)vF
√

2|e|~|m|B, m ∈ Z0, (1)

where vF is the Fermi velocity and m is the quantum number of the corresponding Landau level.

Assuming a perfect linear dispersion and a constant capacitive gate coupling leads to the following

relation between energy E and back gate voltage

E = ~vFkF = ~vF
√
πα∆Vg, (2)

where ∆Vg = Vg − V 0
g , and V 0

g is the gate voltage at the charge neutrality point. As a result,

the Landau levels in the B - Vg plane form straight lines, i.e. Bm = Cm∆Vg, where the slope

Cm = αh/4me is Landau level index (m) dependent and proportional to the capacitive coupling

α (see red lines in Supplementary Figure 2a-e).

The onset of each Landau level can be resolved by taking the mixed second derivative of the lon-

gitudinal conductance G with respect to Vg and B, i.e. ∂2G/∂Vg∂B. The positions of the Landau

levels coincide with the minima/maxima of the derivative on the electron/hole side (see Supple-

mentary Figure 2a-e, where the local minima/maxima coincide with red lines). Alternatively, the
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Landau levels can be determined from the minima of the longitudinal resistivity ρ (marked in white

in Supplementary Figure 2f). Note that Cm is independent of the Fermi velocity, experimental

determination of which is rather difficult. Supplementary Table 1 summarizes the extracted values

of α for the different devices.

Supplementary Note 3. Linearization of G as a function of kF

For a known gate coupling α, one can evaluate the measured conductance G(Vg) as a function of

kF, using the standard constant capacitive coupling model kF =
√
πα∆Vg. Following the Landauer

theory of conductance through a constriction of finite width W , the averaged conductance G(0)(Vg)

features a square-root dependence on Vg,

G(0) =
4e2

h

(
c0WkF
π

− 1

2

)
=

4e2

h

c0W

π

√
πα(Vg − V 0

g )− 2e2

h
. (3)

A closer look at the traces from two different cool-downs of the narrowest device with W =

230 nm (Supplementary Figures 3a and 3c) reveals a systematical deviation from the expected

square-root dependence of G (Supplementary Equation 3) at low carrier concentrations, i.e for

n < 0.45×1012 cm−2 on the electron side and n < 0.75×1012 cm−2 on the hole side (Supplementary

Figure 3a). This deviation becomes more pronounced closer to the charge neutrality point (see

shaded area in Supplementary Figures 3a and 3c). In the ballistic region, i.e., far from the charge

neutrality point, we can use Supplementary Equation 3, with α extracted from the Landau level

fan, and fit parameters V 0,e
g for the electron (e) and V 0,h

g for the hole (h) side. As expected,

the conductance G evolves linearly as function of kF in the ballistic regime (see red traces in

Supplementary Figures 3b and 3d), but large deviations between data and model become apparent

close to the charge neutrality point. We conclude that a linear model using a constant gate coupling

is not directly applicable to our graphene constriction devices. Instead, one needs to account for

the additional charge carrier trap states nT (see main text), modifying the relation between back-

gate voltage and Fermi wave number according to

α(Vg − V 0
g ) = α∆Vg = k2Fπ

−1 + nT (∆Vg) . (4)

Using Supplementary Equation 4, we obtain an implicit mapping kF(∆Vg), which depends on the

functional form of nT(∆Vg) and accounts for the modified density of states in the constriction,

kF(∆Vg) =
√
πα∆Vg − πnT (∆Vg). (5)

We conjecture that the strong cool-down dependence seen in the different traces of Supplementary

Figure 3 are due to modifications in the trap state densities as the sample was exposed to air2.

As the graphene layer in our hBN-graphene-hBN sandwich can only interact with air at the

edges, edge states presumably strongly contribute to nT. Indeed, tight-binding simulations of

the constriction geometry (see main text, Figure 2c,e) yield a clustering of localized edge states

close to the Dirac point. Accounting for nT by Supplementary Equation (5) should recover the
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linear relation between Fermi wave number and conductance. We can thus determine nT from the

measured conductance: we assume a Gaussian distribution of the density of trap states, and fit the

width, position and height of the Gaussian distribution by minimizing deviations of the rescaled

conductance G[(kF(∆Vg)] from the linear conductance G(0)(kF) of Supplementary Equation (3),

see green/black traces in Supplementary Figures 3b and 3d. Note that this procedure assumes

that any other sources for a deviation from a linear relation between kF and G (due to, e.g.,

many-body effects) are small compared to the contribution from trap states nT.

Supplementary Note 4. Reproducibility of kink signatures

We find regular kink structures in the conductance trace of our constriction devices (see, e.g.,

arrows in Supplementary Figure 4b). These kinks are well reproducible for different cool-downs

of the same device (see Supplementary Figures 5, 6), and appear in conductance data of several

different devices (see Supplementary Figure 7).

Analyzing the position of kinks as a function of back-gate voltage offers an independent check

of the trap state density nT. In a first order approximation, the band structure of a graphene

constriction of width W can be described as a collection of one-dimensional subbands originating

from the quantization of the wave vector perpendicular to the transport direction,

k⊥ = ± |M + β|π/W, (6)

where M = 0,±1,±2, . . . is an integer associated with the subband index (both signs emerge

due to the presence of two cones), and 0 ≤ |β| < 0.5 is a Maslov index related to the boundary

conditions at the edges (for simplicity we use β = 0, i.e. a zigzag ribbon). Within the energy

range where the ballistic model (see red trace in Supplementary Figure 8) fits the conductance

trace, the theoretical position of the subbands (marked by vertical black dashed lines in Supple-

mentary Figure 8) for a 230 nm-wide graphene constriction (VM
g = πM2/αW 2, M = 1, 2, . . .)

are in good agreement with the kinks in the conductance (see Supplementary Figure 8a). The

agreement between model and data is also visible in the derivative of the conductance ∂G/∂Vg

(see Supplementary Figure 8b). Close to the charge neutrality point though, the kink signatures

do not appear to follow the theoretical position of the subbands (vertical black dashed lines in

Supplementary Figures 8a, and 8b). Upon rescaling kF according to Supplementary Equation (5)

(independently determined from the average transmission), the kinks are shifted, in good agree-

ment with the quantization model (see comparison between dashed vertical lines and the position

of the kinks in Supplementary Figures 8c and 8d). In summary, we find that the rescaling accord-

ing to Supplementary Equation (5) will (i) realign similar, reproducible kink-structures of different

cool-downs on the kF axis and (ii) shifts the kink positions to fit the simple quantization model

of Supplementary Equation (6).
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Supplementary Note 5. Fourier spectroscopy of transmission data

Once the conductance is represented as a function of kF, the Fourier transform of δG(kF) offers

alternative information on the quantized conductance through the constriction. If the regular

kinks we identify in our conductance data, indeed, correspond to size quantization signatures,

we can extract the constriction width from the first peak of the Fourier transform. Comparison

between the first peak in the Fourier transform of the measured conductance G(kF) − G(0)(kF)

of four constriction devices (see Supplementary Figure 9 and Figure 4 in the main text) to the

geometric width W of the constriction, yields good agreement (see also Figure 3f of the main text).

Supplementary Note 6. Bias spectroscopy

Using bias spectroscopy we can extract the energy scale associated with the regular kink pattern.

The differential conductance g=dI/dV (Figure 4, Supplementary Figures 10 and 11) is measured

from an AC excitation voltage VAC = 250 µVPP, using standard Lock-In techniques. We analyze

six diamonds associated with kinks at the low- and high-conductance ranges (see Supplementary

Figure 10). Extraction of the energy scale from the derivative of the differential conductance

(color panels) yields ∆E = 13.5 ± 2 meV leading to vF = (1.5 ± 0.2) × 106 m s−1. Variations

in the data are due to temperature effects, potential variations and uncertainties in determining

the exact extensions of the diamonds. All six extracted diamonds are taken from energy regions

where size quantization signatures are clearly visible and reproducible - we are thus confident that

the sample is in the quantum point contact regime for all six diamonds. Note that modifications

of the gate-lever arm do not affect the bias spectroscopy data since all energy scales are extracted

from the bias voltage axis (Vb), which represents a direct energy-scale.

We extract similar values of subband spacing (∆E ≈ 13.5 ± 2 and 13.5 ± 3 meV) in a second

(Figure 4b of the main text and Supplementary Figure 10c) and a third (Figure 4a of the main

text and Supplementary Figure 11) cool-down of the same device. The value of subband spacing

is additionally confirmed at finite magnetic field (Supplementary Figure 11c). We note that,

at B = 140 mT, the quantized subbands are still caused by geometric confinement rather than

magnetic confinement (i.e., due to the quantum Hall effect).

Moreover, half-conductance kinks3,4 are expected to emerge for a bias window e Vb greater than

the subband spacing. Indeed, additional kinks at intermediate values of conductance are observed

(horizontal dashed blue lines in Supplementary Figure 10c and red arrows in Supplementary

Figure 11b,c). The observation of these intermediate kinks confirms the confinement nature of the

observed kinks in conductance3,5,6.

To check against any spurious contribution from the AC measurement technique, the bias spec-

troscopy measurements have been repeated in a DC configuration (Supplementary Figure 12). The

conductance G = I/Vb is obtained from a symmetrically applied source-drain DC bias voltage Vb.

Although the resolution of the DC conductance G (Supplementary Figure 12) is not sufficient
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to extract the subband spacing ∆E, the conductance kinks are still visible at identical values of

conductance as in the AC measurements (Supplementary Figure 11).

Supplementary Note 7. Temperature dependence

In Supplementary Figures 13 and 14 we show additional data on the temperature dependence of

our transport data highlighting both (i) the high quality of our samples and (ii) the energy scale

and stability of the observed kink features.

Supplementary Note 8. Evolution of size quantization with magnetic field

We provide an additional data set for the magnetic-field evolution of the size quantization

signatures from the 280 nm-wide graphene constriction in Supplementary Figure 15. We find the

same transition from size-quantization signatures, at low magnetic fields, to the Landau level

regime, at high magnetic fields, as in the sample discussed in the main text (see Figure 5 of main

manuscript).

Supplementary Note 9. Theoretical treatment

We use a third nearest neighbor tight-binding approach to simulate the constriction. We pat-

tern the device edge using the experimental geometry determined from SEM, and a correlated

random fluctuation to simulate microscopic roughness. We rescale our device by a factor of four

compared to the experiment, to arrive at a numerically feasible system size. Such a rescaling

by a factor of four ensures that all relevant length scales of the problem (e.g., device geometry,

Fermi wavelength, magnetic length and correlation length of the edge roughness) are still much

larger than the discretization length of the numerical graphene lattice, allowing to extrapolate

simulation data to the experimental result7. We use a correlation length of 5 nm and an average

disorder amplitude of 13 nm. We determine the Green’s function, G(r, r′), of the device using the

modular recursive Green’s function method8,9. The local density of states, ρ(r, E), is given by

ρ(r, E) ∝ Im[G(r, r;E)]. Calculations were performed on the Vienna Scientific Cluster 3. To de-

termine the transport properties of the device, we attach two leads of width D on each side of the

experimental contact regions, and calculate the total transmission. To avoid residual effects due

to the fixed lead width used in the computation, we average over five different randomly chosen

lead widths D ∈ [60, 80] nm.

To determine the evolution of subbands in a constriction of width W with magnetic field, we

calculate the band structure of a perfect zigzag graphene nanoribbon of width W as a function of
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magnetic field. We include the magnetic field via a Peierls phase factor. The subband positions

are extracted from the minima of each band in the bandstructure of the ribbon.
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